Labelled Sequent Calculi

Lecture 2: The labelled approach

Marianna Girlando

ILLC, Universtiy of Amsterdam

2022 Autumn School on Proof Theory, Utrecht, 7-10 November 2022

Plan

Lecture 1: The basics

- Modal logics
- Sequent calculus for classical and modal logics
- A labelled calculus for K (labK)

Lecture 2: The labelled approach

- Soundness and completeness for labK
- Rules for frame conditions: a general recipe
- Countermodels and termination

Lecture 3: Beyond the modal cube

- Neighbourhood semantics for conditional logics
- ▶ (Bi-)Relational semantics for intuitionistic (modal) logics

- \square Countably many variables x, y, z, ... (labels)
- Labelled formulas
 - $\triangleright xRy \rightsquigarrow "x \text{ has access to } y"$ (relational atoms)
 - $\triangleright x : A \rightsquigarrow "x \text{ satisfies } A"$ (labelled formulas)

- \square Countably many variables x, y, z, \dots (labels)
- Labelled formulas

- (relational atoms)
- (labelled formulas)

Labelled sequent

- \square Countably many variables x, y, z, \dots (labels)
- Labelled formulas
 - $\triangleright xRy \iff "x \text{ has access to } y"$ (relational atoms)
 - ▶ x : A "x satisfies A" (labelled formulas)
- Rules for □ and ◊

$$\frac{xRy, \mathcal{R}, \underline{y} : \underline{A}, \underline{x} : \Box \underline{A}, \Gamma \Rightarrow \underline{\Delta}}{\underline{xRy}, \mathcal{R}, \underline{x} : \Box \underline{A}, \Gamma \Rightarrow \underline{\Delta}} \qquad \Box_{R} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \underline{\Delta}, \underline{y} : \underline{A}}{\mathcal{R}, \Gamma \Rightarrow \underline{\Delta}, \underline{x} : \Box \underline{A}} \underbrace{(\underline{y!})}{\mathcal{R}, \Gamma \Rightarrow \underline{\Delta}, \underline{x} : \Box \underline{A}} \underbrace{(\underline{y!})} \\
\diamond_{L} \frac{xRy, \mathcal{R}, \underline{y} : \underline{A}, \Gamma \Rightarrow \underline{\Delta}}{\mathcal{R}, \underline{x} : \diamond \underline{A}, \Gamma \Rightarrow \underline{\Delta}} \underbrace{(\underline{y!})} \\
\diamond_{R} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \underline{\Delta}, \underline{x} : \diamond \underline{A}, \underline{y} : \underline{A}}{xRy, \mathcal{R}, \Gamma \Rightarrow \underline{\Delta}, \underline{x} : \diamond \underline{A}, \underline{y} : \underline{A}} \underbrace{(\underline{y!})}$$

- \square Countably many variables x, y, z, \dots (labels)
- Labelled formulas

 - $\triangleright x : A \rightsquigarrow "x \text{ satisfies } A"$ (labelled formulas)
- Rules for □ and ♦

$$\begin{array}{ll}
 & xRy, \mathcal{R}, y: A, x: \Box A, \Gamma \Rightarrow \Delta \\
 & xRy, \mathcal{R}, x: \Box A, \Gamma \Rightarrow \Delta
\end{array}$$

$$& \Box_{R} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y: A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x: \Box A} \text{ (y!)}$$

$$& \diamond_{L} \frac{xRy, \mathcal{R}, y: A, \Gamma \Rightarrow \Delta}{\mathcal{R}, x: \diamond A, \Gamma \Rightarrow \Delta} \text{ (y!)}$$

$$& \diamond_{R} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, x: \diamond A, y: A}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, x: \diamond A}$$

Soundness and completeness for labK

Main results, graphically

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\underline{\mathsf{Lb}(S)} = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\underline{\rho} : \underline{\mathsf{Lb}(S)} \to \underline{\underline{W}}$ (interpretation)

```
Given a sequent S = \mathcal{R}, \Gamma \Rightarrow \Delta, and a model \mathcal{M} = \langle W, R, v \rangle, let \mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}, and \rho : \mathsf{Lb}(S) \to W (interpretation)
```

 ${}^{\blacksquare}$ Satisfiability of labelled formulas at $\underline{\mathcal{M}}$ under $\underline{\rho}$:

$$\mathcal{M}, \rho \Vdash \underline{xRy} \quad iff \quad \mathcal{M} \Vdash \underline{\rho(x)} R\underline{\rho(y)}$$

 $\mathcal{M}, \rho \Vdash \underline{x} : \underline{A} \quad iff \quad \mathcal{M}, \underline{\rho(x)} \vdash \underline{A}$

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation)

lacksquare Satisfiability of labelled formulas at $\mathcal M$ under ho:

$$\mathcal{M}, \rho \Vdash xRy$$
 iff $\mathcal{M} \Vdash \rho(x)R\rho(y)$
 $\mathcal{M}, \rho \Vdash x : A$ iff $\mathcal{M}, \rho(x) \Vdash A$

 \blacksquare Satisfiability of sequents at $\mathcal M$ under ρ :

$$\mathcal{M}, \rho \Vdash \underline{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \text{iff}$$

$$\left(\begin{array}{c} \underline{\mathsf{if}} \quad \text{for all } \underline{xRy} \in \mathcal{R}, \underline{x} : G \in \Gamma, \ \mathcal{M}, \rho \Vdash xRy \ \text{and} \ \mathcal{M}, \rho \Vdash x : G \\ \underline{\mathsf{then}} \quad \text{for some} \ x : D \in \Delta, \ \mathcal{M}, \rho \Vdash x : D \end{array} \right)$$

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation)

 ${\color{red} race Satisfiability}$ of labelled formulas at ${\mathcal M}$ under ${\color{blue}
ho}$:

$$\mathcal{M}, \rho \Vdash xRy$$
 iff $\mathcal{M} \Vdash \rho(x)R\rho(y)$
 $\mathcal{M}, \rho \Vdash x : A$ iff $\mathcal{M}, \rho(x) \Vdash A$

lacksquare Satisfiability of sequents at ${\mathcal M}$ under ho :

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff

if for all $xRy \in \mathcal{R}, x : G \in \Gamma$, $\mathcal{M}, \rho \Vdash xRy$ and $\mathcal{M}, \rho \Vdash x : G$ then for some $x : D \in \Delta$, $\mathcal{M}, \rho \Vdash x : D$

lacksquare Validity of sequents in a class of frames X:

$$\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff for any $\underline{\rho}$ and any $\underline{\mathcal{M}} \in \mathcal{X}, \ \mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$

Soundness of labK

Soundness. If
$$\vdash_{labK} \Rightarrow x : A$$
 then $\models_{\mathcal{K}} \Rightarrow x : A$

Proof. Induction on the height h of the derivation. $-$ # of nodes occarring in its largest of the point of the derivation of the derivation of the height h of the derivation. $-$ # of nodes occarring in its largest of the point of the height h of the derivation. $-$ # of nodes occarring in its largest of the hold of the height h of the derivation. $-$ # of nodes occarring in its largest of the hold of the height h of the derivation. $-$ # of nodes occarring in its largest of the hold of the height h of the derivation. $-$ # of nodes occarring in its largest of the hold of the height h of the derivation. $-$ # of nodes occarring in its largest of the hold of the height h of the derivation. $-$ # of nodes occarring in its largest or h of the height h of the derivation. $-$ # of nodes occarring in its largest of the hold of the height h of the derivation. $-$ # of nodes occarring in its largest or h of the height h of the derivation. $-$ # of nodes occarring in its largest of the hold of the height h of the derivation. $-$ # of nodes occarring in its largest or h of the height h of the height

11, p'1 P

Main results, graphically

=) Structual Proof Theory 2001

Substitution on labelled formulas:

$$xRy[z/y] := xRz$$

 $y : A[z/y] := z : A$

Substitution on multisets of labelled formulas $\Gamma[z/y]$

Substitution on labelled formulas:

$$xRy[z/y] := xRz$$

 $y : A[z/y] := z : A$

Substitution on multisets of labelled formulas $\Gamma[z/y]$

Height-preserving admissibility of substitution.

$$\frac{\mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}[y/x], \Gamma[y/x] \Rightarrow \Delta[y/x]}$$

Substitution on labelled formulas:

$$xRy[z/y] := xRz$$

 $y : A[z/y] := z : A$

Substitution on multisets of labelled formulas $\Gamma[z/y]$

Height-preserving admissibility of substitution.

R[y/x],
$$\Gamma[y/x] \Rightarrow \Delta[y/x]$$

$$\frac{\mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}[y/x], \Gamma[y/x] \Rightarrow \Delta[y/x]}$$

<u>Height-preserving</u> admissibility of weakening. ($\underline{\phi}$ is xRy or x : A)

$$\frac{\mathcal{R}, \Gamma \Rightarrow \Delta}{\phi, \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \frac{\mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta, \phi}$$

Invertibility.

For every r, if the conclusion of r is derivable with a derivation of height h, then each of its premisses is derivable, with at most the same h.

Invertibility.

For every r, if the conclusion of r is derivable with a derivation of height h, then each of its premisses is derivable, with at most the same h.

Proof. Case of \square_R :

$$\Box_{\mathsf{R}} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A}$$

Invertibility.

For every r, if the conclusion of r is derivable with a derivation of height h, then each of its premisses is derivable, with at most the same h.

Proof. Case of \square_R :

$$\Box_{\mathsf{R}} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A}$$

By induction on the height *h* of the derivation of $\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A$.

Invertibility.

For every r, if the conclusion of r is derivable with a derivation of height h, then each of its premisses is derivable, with at most the same h.

Proof. Case of \square_R :

$$\Box_{R} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A}$$

By induction on the height h of the derivation of \Re , Γ \Rightarrow \triangle , $x : \Box A$.

▶ If h = 0, then xRy, \mathcal{R} , $() \Rightarrow ()$, y : A is derivable.

Invertibility.

For every r, if the conclusion of r is derivable with a derivation of height h, then each of its premisses is derivable, with at most the same h.

Proof. Case of \square_R :

$$\Box_{\mathsf{R}} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A}$$

By induction on the height h of the derivation of $\mathcal{R}, \Gamma \Rightarrow \Delta, x : \square A$.

- ▶ If h = 0, then $xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A$ is derivable.
- If h > 0, two cases:

$$\frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A}$$

0, two cases:
$$\frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A}$$

$$\frac{\mathcal{R}', \Gamma' \Rightarrow \Delta', \underline{x} : \Box A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A}$$
 arguin

Height-preserving admissibility of contraction. ($\underline{\phi}$ is xRy or x:A) $\underline{\phi, \phi, \mathcal{R}, \Gamma \Rightarrow \Delta}$ $\underline{\phi, \phi, \mathcal{R}, \Gamma \Rightarrow \Delta}$ $\underline{\mathcal{R}, \Gamma \Rightarrow \Delta, \phi, \phi}$ $\underline{\mathcal{R}, \Gamma \Rightarrow \Delta, \phi, \phi}$

Proof. By induction on $(w, h_1 + h_2)$.

Admissibility of cut.

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, \mathbf{x} : \mathbf{A} \quad \mathbf{x} : \mathbf{A}, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Proof. By induction on $(w, h_1 + h_2)$.

$$\frac{\mathsf{xR} \mathsf{y}, \mathcal{R}, \Gamma \Rightarrow \Delta, \mathsf{y} : \Box \mathsf{A}}{\mathsf{cut}} \underbrace{\frac{\mathsf{xR} \mathsf{z}, \mathcal{R}', \mathsf{x} : \Box \mathsf{A}, \mathsf{z} : \mathsf{A}, \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathsf{xR} \mathsf{z}, \mathcal{R}', \mathsf{x} : \Box \mathsf{A}, \Gamma' \Rightarrow \Delta'}}_{\mathcal{R}, \mathsf{xR} \mathsf{z}, \mathcal{R}', \Gamma' \Rightarrow \Delta, \Delta'}$$

Admissibility of cut.

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, \mathbf{x} : \mathbf{A} \quad \mathbf{x} : \mathbf{A}, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Proof. By induction on $(w, h_1 + h_2)$.

$$\begin{array}{c} xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y: \triangle A \\ \hline & \mathcal{R}, \Gamma \Rightarrow \Delta, x: \Box A \\ \hline & \mathcal{R}, xRz, \mathcal{R}', x: \Box A, z: A, \Gamma' \Rightarrow \Delta' \\ \hline & \mathcal{R}, xRz, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta' \\ \hline \\ & xRz, \mathcal{R}, \Gamma \Rightarrow \Delta, x: \Box A \\ \hline & xRz, \mathcal{R}', x: \Box A, \Gamma' \Rightarrow \Delta' \\ \hline & xRz, \mathcal{R}, \Gamma \Rightarrow \Delta, z: A \\ \hline & xRz, \mathcal{R}, XRz, \mathcal{R}', Z: A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta' \\ \hline & \mathcal{R}, \mathcal{R}, xRz, xRz, \mathcal{R}, \mathcal{R}', \Gamma, \Gamma, \Gamma' \Rightarrow \Delta, \Delta' \\ \hline & \mathcal{R}, xRz, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta' \\ \hline \\ & \mathcal{R}, xRz, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta' \\ \hline \end{array}$$

Admissibility of cut.

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, \mathbf{x} : \mathbf{A} \quad \mathbf{x} : \mathbf{A}, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Proof. By induction on $(w, h_1 + h_2)$.

$$\frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y: \Box A}{\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x: \Box A}{\mathcal{R}, xRz, \mathcal{R}', \Gamma' \Rightarrow \Delta'}} \frac{xRz, \mathcal{R}', x: \Box A, z: A, \Gamma' \Rightarrow \Delta'}{xRz, \mathcal{R}', x: \Box A, \Gamma' \Rightarrow \Delta'}$$

$$\operatorname{cut} \frac{xRz, \mathcal{R}, \Gamma \Rightarrow \Delta, z : A \qquad xRz, \mathcal{R}', x : \Box A, z : A, \Gamma' \Rightarrow \Delta'}{xRz, \mathcal{R}, \mathcal{R}', z : A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'} \\ \operatorname{ctr} \frac{\mathcal{R}, \mathcal{R}, xRz, xRz, \mathcal{R}', \Gamma, \Gamma, \Gamma' \Rightarrow \Delta, \Delta, \Delta'}{\mathcal{R}, xRz, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Cut-free completeness. If $\vdash_K A$ then $\vdash_{labK} \Rightarrow x : A$.

Frame conditions: a general recipe

From frame conditions to rules

_	Name	Axiom	Frame condition	
	d	$\Box A \rightarrow \Diamond A$	Seriality	$\forall x \exists y (xRy)$
	t	$\Box A \rightarrow A$	Reflexivity	$\forall x(xRx)$
	b	$A \rightarrow \Box \Diamond A$	Symmetry	$\forall x \forall y (xRy \rightarrow yRx)$
	4	$\Box A \rightarrow \Box \Box A$	Transitivity	$\forall x \forall y \forall z (xRy \land yRz \rightarrow xRz)$
	5	$\Diamond A \to \Box \Diamond A$	Euclideaness	$\forall x \forall y \forall z (xRy \land xRz \rightarrow yRz)$

From frame conditions to rules

Name	Axiom	Frame condition	
d	$\Box A \rightarrow \Diamond A$	Seriality	$\forall x \exists y (xRy)$
t	$\Box A \rightarrow A$	Reflexivity	$\forall x(xRx)$
b	$A \rightarrow \Box \Diamond A$	Symmetry	$\forall x \forall y (xRy \rightarrow yRx)$
4	$\Box A \rightarrow \Box \Box A$	Transitivity	$\forall x \forall y \forall z (xRy \land yRz \rightarrow xRz)$
5	$\Diamond A \to \Box \Diamond A$	Euclideaness	$\forall x \forall y \forall z (xRy \land xRz \rightarrow yRz)$

Frame conditions as first order logic formulas

$$\begin{array}{ll} t & ::= & x \\ A,B & ::= & xRy \mid A \land B \mid A \lor B \mid A \to B \mid \forall xA \mid \exists xA \end{array}$$

Geometric axioms [Simpson, 1994], [Negri, 2003]

Geometric axioms [Simpson, 1994], [Negri, 2003]

$$\forall \vec{x} \left((P_1 \wedge \ldots \wedge P_n) \rightarrow \bigvee_{i=1}^m \exists \vec{y}_i \left(Q_{i1} \wedge \ldots \wedge Q_{ik_i} \right) \right)$$

Geometric axioms [Simpson, 1994], [Negri, 2003]

$$\forall \vec{x} \left((P_1 \wedge \ldots \wedge P_n) \implies \bigvee_{i=1}^m \exists \vec{y}_i \left(Q_{i1} \wedge \ldots \wedge Q_{ik_i} \right) \right)$$

 \vec{x} , \vec{y}_i are (possibly empty) vectors of variables

Geometric axioms [Simpson, 1994], [Negri, 2003]

$$\forall \vec{x} \left((P_1 \land \ldots \land P_n) \rightarrow \bigvee_{i=1}^m \exists \vec{y}_i \left(Q_{i1} \land \ldots \land Q_{ik_i} \right) \right)$$

- \vec{x} , \vec{y}_i are (possibly empty) vectors of variables
- ▶ $n, m \ge 0, k_1, ..., k_m \ge 1$

Geometric axioms [Simpson, 1994], [Negri, 2003]

$$\forall \vec{x} \left((P_1 \wedge \ldots \wedge P_n) \rightarrow \bigvee_{i=1}^m \exists \vec{y}_i \left(Q_{i1} \wedge \ldots \wedge Q_{ik_i} \right) \right)$$

- \vec{x} , \vec{y}_i are (possibly empty) vectors of variables
- ▶ $n, m \ge 0, k_1, ..., k_m \ge 1$
- $\triangleright P_1, \dots, P_n, Q_{i1}, \dots, Q_{ik_i}$ atomic formulas

Geometric axioms [Simpson, 1994], [Negri, 2003]

$$\forall \vec{x} \Big((P_1 \wedge \ldots \wedge P_n) \rightarrow \bigvee_{i=1}^m \exists \underline{\vec{y_i}} \Big(Q_{i1} \wedge \ldots \wedge Q_{ik_i} \Big) \Big)$$

- \vec{x} , \vec{y}_i are (possibly empty) vectors of variables
- ▶ $n, m \ge 0, k_1, ..., k_m \ge 1$
- $\triangleright P_1, \dots, P_n, Q_{i1}, \dots, Q_{ik_i}$ atomic formulas
- $\vec{y}_1, \dots, \vec{y}_m$ do not occur in any of P_1, \dots, P_n

Geometric axioms [Simpson, 1994], [Negri, 2003]

$$\forall \vec{x} \Big((P_1 \wedge \ldots \wedge P_n) \rightarrow \bigvee_{i=1}^m \exists \vec{y}_i \Big(Q_{i1} \wedge \ldots \wedge Q_{ik_i} \Big) \Big)$$

- \vec{x} , \vec{y}_i are (possibly empty) vectors of variables
- ▶ $n, m \ge 0, k_1, ..., k_m \ge 1$
- $\triangleright P_1, \dots, P_n, Q_{i1}, \dots, Q_{ik_i}$ atomic formulas
- $ightharpoonup \vec{y}_1, \dots, \vec{y}_m$ do not occur in any of P_1, \dots, P_n
- Labelled rule

$$r \frac{\Xi_{1}[\vec{z_{1}}/\vec{y_{1}}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta \quad \cdots \quad \Xi_{m}[\vec{z_{m}}/\vec{y_{m}}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}{\Pi, \mathcal{R}, \Gamma \Rightarrow \underline{\Delta}}$$

Geometric axioms [Simpson, 1994], [Negri, 2003]

$$\forall \vec{x} \Big((P_1 \wedge \ldots \wedge P_n) \rightarrow \bigvee_{i=1}^m \exists \vec{y}_i \Big(Q_{i1} \wedge \ldots \wedge Q_{ik_i} \Big) \Big)$$

- \vec{x} , \vec{y}_i are (possibly empty) vectors of variables
- ▶ $n, m \ge 0, k_1, ..., k_m \ge 1$
- $\triangleright P_1, \dots, P_n, Q_{i1}, \dots, Q_{ik_i}$ atomic formulas
- $ightharpoonup \vec{y}_1, \dots, \vec{y}_m$ do not occur in any of P_1, \dots, P_n
- Labelled rule

$$r \frac{\Xi_{1}[\vec{z_{1}}/\vec{y_{1}}], (\vec{p_{1}})\mathcal{R}, \Gamma \Rightarrow \Delta \quad \cdots \quad \Xi_{m}[\vec{z_{m}}/\vec{y_{m}}], (\vec{p_{1}}\mathcal{R}, \Gamma \Rightarrow \Delta)}{\Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

 $ightharpoonup \Pi = \{P_1, \dots, P_n\}$ and $\Xi_i = \{Q_{i1}, \dots, Q_{ik_i}\}$ are multisets

Geometric axioms [Simpson, 1994], [Negri, 2003]

$$\forall \vec{x} \Big((P_1 \wedge \ldots \wedge P_n) \rightarrow \bigvee_{i=1}^m \exists \vec{y}_i \Big(Q_{i1} \wedge \ldots \wedge Q_{ik_i} \Big) \Big)$$

- \vec{x} , \vec{y}_i are (possibly empty) vectors of variables
- ▶ $n, m \ge 0, k_1, ..., k_m \ge 1$
- $\triangleright P_1, \dots, P_n, Q_{i1}, \dots, Q_{ik_i}$ atomic formulas
- $ightharpoonup \vec{y}_1, \dots, \vec{y}_m$ do not occur in any of P_1, \dots, P_n

Labelled rule

$$r = \frac{\Xi_{1}[\vec{z_{1}}/\vec{y_{1}}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta \quad \cdots \quad \Xi_{m}[\vec{z_{m}}/\vec{y_{m}}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}{\Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

- $ightharpoonup \Pi = \{P_1, \dots, P_n\}$ and $\Xi_i = \{Q_{i1}, \dots, Q_{ik_i}\}$ are multisets
- $\Rightarrow \exists [\vec{z}/\vec{y}]$: multiset obtained by substituting the free variables \vec{y} with variables \vec{z} in every formula of \exists

Geometric axioms [Simpson, 1994], [Negri, 2003]

$$\forall \vec{x} \left((P_1 \wedge \ldots \wedge P_n) \rightarrow \bigvee_{i=1}^m \exists \vec{y}_i \left(Q_{i1} \wedge \ldots \wedge Q_{ik_i} \right) \right)$$

- \vec{x} , \vec{y}_i are (possibly empty) vectors of variables
- $n, m \ge 0, k_1, \ldots, k_m \ge 1$
- $\triangleright P_1, \dots, P_n, Q_{i1}, \dots, Q_{ik_i}$ atomic formulas
- $ightharpoonup \vec{y}_1, \dots, \vec{y}_m$ do not occur in any of P_1, \dots, P_n

Labelled rule

$$r = \frac{\Xi_{1}[\vec{z_{1}}/\vec{y_{1}}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta \quad \cdots \quad \Xi_{m}[\vec{z_{m}}/\vec{y_{m}}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}{\Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

- $ightharpoonup \Pi = \{P_1, \dots, P_n\}$ and $\Xi_i = \{Q_{i1}, \dots, Q_{ik_i}\}$ are multisets
- $\Rightarrow \exists [\vec{z}/\vec{y}]$: multiset obtained by substituting the free variables \vec{y} with variables \vec{z} in every formula of \exists
- $ightharpoonup \vec{z_1}, \ldots, \vec{z_m}$ do not occur in $\mathcal{R}, \Gamma \cup \Delta$

Examples

$$\forall \vec{x} \left((P_1 \land \dots \land P_n) \rightarrow \bigvee_{i=1}^m \exists \vec{y}_i \left(Q_{i1} \land \dots \land Q_{ik_i} \right) \right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$r \frac{\exists_1 [\vec{z_1}/\vec{y_1}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}{\Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

$$\square, \mathcal{R}, \Gamma \Rightarrow \Delta$$

$$\square, \Gamma \Rightarrow \Delta$$

□ Transitivity
$$\forall x \forall y \forall z (xRy \land yRz \rightarrow xRz)$$

Labelled calculi for extensions of K

Rules for **labK**, plus structural rules for frame conditions:

$$\begin{split} & \operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \, (\text{y!}) & \operatorname{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} & \operatorname{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \\ & \operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} & \operatorname{Euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \end{split}$$

Labelled calculi for extensions of K

Rules for labK, plus structural rules for frame conditions:

$$\operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} (y!) \quad \operatorname{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

$$\operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{Euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

labX: labelled sequent calculi for logics in the S5 cube

Labelled calculi for extensions of K

Rules for labK, plus structural rules for frame conditions:

$$\operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \text{ (y!)} \quad \operatorname{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

$$\operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{Euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

- labX: labelled sequent calculi for logics in the S5 cube
- \bowtie $\vdash_{labX} A \rightsquigarrow A$ is derivable in labX

Adequacy of labX

Soundness. For all the logics in the S5 cube,

If $\vdash_{\mathsf{labX}} \Rightarrow x : A$ then $\models_{\mathcal{X}} \Rightarrow x : A$

Example. If the premiss of rule Ser is valid, then its conclusion is valid in all serial frames.

$$\operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \text{ (y!)}$$

Admissibility of cut. Cut is admissible in **labX**:

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, \mathbf{x} : \mathbf{A} \quad \mathbf{x} : \mathbf{A}, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Cut-free completeness. For any logic X in the S5 cube, If $\vdash_X A$ then $\vdash_{\mathsf{lab}X} \Rightarrow X : A$.

Countermodels and termination

Main results, graphically

Cut-free completeness (semantically). For any logic X in the S5 cube, If $\models_{X} A$ then $\vdash_{\mathsf{lab}X} \Rightarrow X : A$.

Cut-free completeness (semantically). For any logic X in the S5 cube, If $\models_X A$ then $\vdash_{\mathsf{lab}X} \Rightarrow x : A$.

Proof. Suppose $\forall_{labX} \Rightarrow x : A$.

Cut-free completeness (semantically). For any logic X in the S5 cube, If $\models_X A$ then $\vdash_{\mathbf{lab}X} \Rightarrow x : A$.

Proof. Suppose $\forall_{labX} \Rightarrow x : A$. We shall prove that $\not\models_X A$.

Cut-free completeness (semantically). For any logic X in the S5 cube, If $\models_X A$ then $\vdash_{\mathbf{lab}X} \Rightarrow x : A$.

Proof. Suppose $ensuremath{\not|}_{labX} \Rightarrow x : A$. We shall prove that $ensuremath{\not|}_X A$.

That is, we construct a model $ensuremath{\mathcal{M}}^\times$ with frame conditions $ensuremath{\mathcal{X}}$ and a realisation $ensuremath{\rho}^\times$ such that $ensuremath{\mathcal{M}}^\times$, $ensuremath{\rho}^\times \not\models \Rightarrow x : A$.

Cut-free completeness (semantically). For any logic X in the S5 cube, If $\models_X A$ then $\vdash_{\mathbf{lab}X} \Rightarrow x : A$.

Proof. Suppose $\not\models_{\mathsf{lab}X} \Rightarrow x : A$. We shall prove that $\not\models_{\mathcal{X}} A$. That is, we construct a model \mathcal{M}^{\times} with frame conditions \mathcal{X} and a realisation ρ^{\times} such that $\mathcal{M}^{\times}, \rho^{\times} \not\models \Rightarrow x : A$. Therefore $\mathcal{M}^{\times}, \rho^{\times}(x) \not\models A$ and $\not\models_{\mathcal{X}} A$.

Cut-free completeness (semantically). For any logic X in the S5 cube, If $\models_X A$ then $\vdash_{labX} \Rightarrow x : A$.

Proof. Suppose $noindent_{labX} \Rightarrow x : A$. We shall prove that $noindent_{X} \neq X$. That is, we construct a model $noindent_{X} \neq X$ with frame conditions $noindent_{X} \neq X$ and a realisation $noindent_{A} \neq X$ such that $noindent_{A} \neq X$ and $noindent_{A} \neq X$. Therefore $noindent_{A} \neq X$ and $noindent_{A} \neq X$.

We construct a countermodel from an exhaustive search tree for $\Rightarrow x : A$.

Cut-free completeness (semantically). For any logic X in the S5 cube, If $\models_X A$ then $\vdash_{labX} \Rightarrow x : A$.

Proof. Suppose $ot |_{\mathbf{labX}} \Rightarrow x : A$. We shall prove that $\not \models_{\mathcal{X}} A$. That is, we construct a model \mathcal{M}^{\times} with frame conditions \mathcal{X} and a realisation ρ^{\times} such that $\mathcal{M}^{\times}, \rho^{\times} \not\models \Rightarrow x : A$. Therefore $\mathcal{M}^{\times}, \rho^{\times}(x) \not\models A$ and $\not\models_{\mathcal{X}} A$.

- We construct a countermodel from an exhaustive search tree for $\Rightarrow x : A$.
 - ▶ Infinite search tree → Infinite countermodel

Cut-free completeness (semantically). For any logic X in the S5 cube, If $\models_X A$ then $\vdash_{\mathbf{lab}X} \Rightarrow x : A$.

Proof. Suppose $ot |_{\mathbf{labX}} \Rightarrow x : A$. We shall prove that $\not \models_{\mathcal{X}} A$. That is, we construct a model \mathcal{M}^{\times} with frame conditions \mathcal{X} and a realisation ρ^{\times} such that $\mathcal{M}^{\times}, \rho^{\times} \not\models \Rightarrow x : A$. Therefore $\mathcal{M}^{\times}, \rho^{\times}(x) \not\models A$ and $\not\models_{\mathcal{X}} A$.

- We construct a countermodel from an exhaustive search tree for $\Rightarrow x : A$.
 - ▶ Infinite search tree → Infinite countermodel
 - ▶ Finite search tree → Finite countermodel

Main references

- Dyckhoff and Negri, Proof analysis in intermediate logics, Archive for Mathematical Logic 51.1, 2012.
- ▶ Negri, Proof analysis in modal logic, Journal of Philosophical Logic 34.5, 2005.
- Negri, Contraction-free sequent calculi for geometric theories with an application to Barr's theorem, Arch. Math. Logic 42, 2003.
- Negri, Proof analysis beyond geometric theories: from rule systems to systems of rules, Journal of Logic and Computation 26.2, 2014.
- ▶ Negri and von Plato, Structural proof theory, Cambridge University Press, 2008.
- ▶ Simpson, The proof theory and semantics of intuitionistic modal logic, PhD thesis, University of Edinburgh 1994.