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Plan

Lecture 1: The basics

> Modal logics
> Sequent calculus for classical and modal logics
> A labelled calculus for K (labK)

Lecture 2: The labelled approach

> Soundness and completeness for labK
> Rules for frame conditions: a general recipe
> Countermodels and termination

Lecture 3: Beyond the modal cube

> Neighbourhood semantics for conditional logics
> (Bi-)Relational semantics for intuitionistic (modal) logics
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Recap: labK

i Countably many variables

== Labelled formulas

> XRy ~» “x has accessto y”
> X: A ~» “xsatisfies A”

1= | abelled sequent RII=A

1= Rules for o and ¢
xRy,R,y : A,x:0A, T = A
XRy,R,x : oA, = A
xRy, R,y : A,l = A

O

XV, Z,...

(labels)

(relational atoms)
(labelled formulas)

xRy,R, T = A,y - A

)

RTT=Ax:0A

XRy,R,T = A, x: CA,y - A

|
Rx . oAT=A W

xRy, R, = A, x: CA
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Recap: labK

1= Countably many variables x,y,z,... (labels)

== Labelled formulas

> XRy ~» “x has accessto y” (relational atoms)
> X: A ~» “xsatisfies A” (labelled formulas)

1= | abelled sequent RII=A

== Rules for o0 and ¢

xRy,R,y : A,x :0A, T = A xRy,R, T = A,y - A

T XRy.R.x OAT = A T RT=>Ax 0A W
xRy,R,y : A,T = A XRy,R, T = A, x: A,y 1 A
Rx oAT=A ) TRy RT = Ax: oA

1= gk RLI=A ~» R T = Aisderivable in labK
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Soundness and completeness for labK
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Main results, graphically

\ |:
Soundri Soundness /

Completeness

Completeness @

Cut-el Cut-adm
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5/31





Validity of sequents

Given a sequent S =R, I = A, and a model M = (W, R, v), let
Lb( )={xIxeRUTUA} and p Lb(S) — W (interpretation)
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Validity of sequents

Given a sequent S =R, = A, and a model M = (W, R, v), let
Lb(S) ={x|xeRUTUA},and p:Lb(S)— W (interpretation)
i Satisfiability of labelled formulas at M under p :

M,pr xRy iff M p(x)Rp(y)
Mpkx:A iff M,p(x) A

1= Satisfiability of sequents at M under p :
Mok R T = A iff
if forallxRyeR,x:Gel, M,prxRyand M,p+x:G
then forsomex:De A, M,p+x:D
~K
i Validity of sequents in a class of frames X :
FxR,I=A iff foranypandany MeX, M,pr R, = A
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Soundness of labK

RY)
Soundness. If Fapk = X: A then E¢ = x: A

Proof. Induction on the height h of the derivation. — "f waclts
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Main results, graphically
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Towards cut-admissibility 1/3 "’)'::ﬁﬂ”ps f Toe
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iz Substitution on labelled formulas:
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Towards cut-admissibility 1/3

iz Substitution on labelled formulas:

xRy[z/y] = xRz
y:Alzly] = z:A
i Substitution on multisets of labelled formulas T[z/y]
Height-preserving admissibility of substitution. > k iv ~) V
—_w 7
RI=A c c

Rly/x],Tly/x] = Aly/x]

Height-preserving admissibility of weakening. (¢ is xRy or x : A)

RI=A RI=A
o, RTT=A RIT= A ¢
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Towards cut-admissibility 2/3

Invertibility.
For every r, if the conclusion of r is derivable with a derivation of
height h, then each of its premisses is derivable, with at most the

same h.
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Invertibility.
For every r, if the conclusion of r is derivable with a derivation of
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same h.
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By induction on the height h of the derivation of R,[F)E(&,x :OA.
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ORr

10/31











Towards cut-admissibility 2/3

Invertibility.
For every r, if the conclusion of r is derivable with a derivation of
height h, then each of its premisses is derivable, with at most the

same h.
Proof. Case of OR:
xRy, R, = A,y : A
R,TT= A, x:0A

ORr

By induction on the height h of the derivation of R, = A, x : OA.

> If h =0, then xRy,R,T = A,y : A is derivable.
W

> If h > 0, two cases: 3 ok
( Har
XRy,R,T = A,y : A R, "= A, ,x:0A acéaim
O r
= RT=Ax:0A R.T = A, x:0A
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Towards cut-admissibility 3/3

Height-preserving admissibility of contraction. gg is xRy or x : A)

o DR
6O RT=>A  RT=A o> "
6, R = A RI=D,0_, .. ap
Proof. Case ¢ = x : OA :
s ,,L\‘{xof{l Hp*:OR, 5 WO
i R.7 ONx.0R . OR o

7 uﬂ%,mﬂ\j.ﬁ.r% AI 3:8‘),5114
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Cut admissibility

Admissibility of cut. \/

_RT = AK 9@7{’ M= A

RR, [, = AN

Proof. By induction on (w, hy + hy).
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Cut admissibility

Admissibility of cut.
RIT=>Ax:A x:AR,["= 4
RR,I,["=> A, A

cut

Proof. By induction on (w, hy + hy).

xRy, R, = A,y : OA xRz, R ,x :0A,z: A" = A’
= RT=A,x:0A o xRz, R, x : oA, " = A’
t
“ RXRz,R.T.T" = A, N
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Cut admissibility

Admissibility of cut.
RIT=>Ax:A x:AR,["= 4
RR,I,["=> A, A

cut

Proof. By induction on (w, hy + hy).

XRy,R,T = A,y : A XRz,R',x :0A,z: A, "= A’
RT=A,x:0A - xRz, R, x : oA, " = A’
R, xRz, R',, " = A, A’

Or

cut

V2
RITT=A,x:0A xRz,R,x:0A,z:A T = A
&/ (ewy
Y _XRzZRT=A,z:A XRz,R, R,z : A,T,T" = A, I\
cut — —
(o) R, R, xRz, xRz, R, [,[,[" = A, A, A

ctr

R, xRz, R, T, " = AN
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Cut admissibility

Admissibility of cut.
RIT=>Ax:A x:AR,["= 4
RR,I,["=> A, A

cut

Proof. By induction on (w, hy + hy).

xRy, R, = A,y : OA XRz,R',x :0A,z: A, "= A’
RT=A,x:0A - xRz, R, x : oA, " = A’
R, xRz, R',, " = A, A’

Or

cut

RIT=A,x:0A xRz,R,x:0A,z:A T = A
XRZRT=Az:A XRZ.RR .z AT.T = AN
R, R, xRz, xRz, R',[,T," = A, A, A
R, xRz, R, T, " = A, A’

cut

ctr

Cut-free completeness. If rk A then Figpk = X : A.
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Frame conditions: a general recipe
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From frame conditions to rules

Name Axiom Frame condition
d DA — OA | Seriality Vx3y(xRy)
t OA —- A | Reflexivity Vx(xRx)
b A - O0CA | Symmetry VxVy(xRy — yRx)
4 0OA — OOA | Transitivity VxVyVz(xRy A yRz — xRz)
5 OA — O0A | Euclideaness VxVyVz(xRy A xRz — yRz)
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From frame conditions to rules

Name Axiom Frame condition
d DA — OA | Seriality Vx3y(xRy)
t OA —- A | Reflexivity Vx(xRx)
b A - O0CA | Symmetry VxVy(xRy — yRx)
4 0OA — OOA | Transitivity VxVyVz(xRy A yRz — xRz)
5 OA — O0A | Euclideaness VxVyVz(xRy A xRz — yRz)

i Frame conditions as first order logic formulas

I = X
A B = ny|AAB|AvB|A—>B|VxA|3xA
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From (geometric) axioms to rules

1> Geometric axioms ,
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From (geometric) axioms to rules

iz Geometric axioms

m

V)?((P1 A...APp) - ’.\_/132(0” /\.../\Q,‘k,-))

X, yi are (possibly empty) vectors of variables
nm>0, Ki,...,km=>1

Pi,...,Pn, Qj1, ..., Qi atomic formulas
V1,...,¥Ym do not occur in any of Py, ..., P,

v

vV Vv V
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v

X, yi are (possibly empty) vectors of variables

> n,m=>0, ki,...,km>1
> Py,...,Ppn, Qi,..., Qi atomic formulas
> ¥1,...,yYm do not occur in any of Py,..., P,

> Labelled rule

AL LRT=A - Znlzm/ym], LR, T = A
;
H,R,_r :>é
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From (geometric) axioms to rules

iz Geometric axioms

m
V)?((P1 A...APp) - ’.\_/137[(Qi1 /\.../\Qik,))

v

X, yi are (possibly empty) vectors of variables

>nm>0, Ki,...,Kkp>1
> Pi,....Ppn, Qit,..., Qy atomic formulas
> ¥1,...,yYm do not occur in any of Py,..., P,

> Labelled rule
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;
MmRIM=A

> [M1={P1,....Py} and =; ={Qj,..., Qi } are multisets
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From (geometric) axioms to rules

1> Geometric axioms ,

V)?((P1 A...APp) - i\_m/13}7),-(Q,'1 /\.../\Q,‘k,-))

v

X, yi are (possibly empty) vectors of variables

>nm>0, Ki,...,kpm>1
> Py,...,Ppn, Qi,..., Qi atomic formulas
> ¥1,...,yYm do not occur in any of Py,..., P,

> Labelled rule

AL LRT=A - Znlzm/ym], LR, T = A
;
MmRIM=A

> [M1={P1,....Py} and =; ={Qj,..., Qi } are multisets
> =[Z/y]: multiset obtained by substituting the free variables y
with variables Z in every formula of =

> Z1,...,Zmdo not occurin R,T U A
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Examples

W«HAmAﬂ)ﬁVLHMQMHAQM)

l
rE1[z_;/y_‘;]9n7R7r:A Em[z?n/y_r)n],n,R,r:?’A
MmRI=A
e Seriality Vx3Ay(xRy) Mo (T o 93("‘ Rd)) *R‘é R.T5A )
- = ] ’ l !
Reobd
i Reflexivity Vx(xRx) M’A
R, T=2A

v Transitivity VxVyVYz(xRy A yRz — xRz)
%({2_1 ,’X-R‘Sl \3« 2, R( Uad\
A
,),_1’\’3' yRQl R. =
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Labelled calculi for extensions of K

Rules for labK, plus structural rules for frame conditions:

xRy, R, = A XRx, R, = A yRx, xRy, R, = A

ser ——— (y!) ref

RT=>A " RT=>A " XRy.RT=A
xRz, xRy,yRz, R, = A yRz, xRy, xRz, R, = A
r E
xRy, yRz,R.T = A T XRy, xRz, R = A

t
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Labelled calculi for extensions of K

Rules for labK, plus structural rules for frame conditions:

xRy, R, = A XBx, R, = A yRx, xRy, R, = A
ser————(yl) ref——  sym
RT=A RIT=A xRy,R,T = A

xRz, xRy,yRz, R, = A yRz, xRy, xRz, R, = A
r Euc

xRy, yRz, R, = A xRy, xRz, R, = A

t

i labX: labelled sequent calculi for logics in the S5 cube

S4—— 85
TJ—TB/
D4 ----- D45~

;,-Db57
-~ DB
K4 -+--- K45 -|- KB5
;K5 C y
K = KB
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Rules for labK, plus structural rules for frame conditions:

xRy, R, = A XBx, R, = A yRx, xRy, R, = A
ser————(yl) ref——  sym
RT=A RIT=A xRy,R,T = A

xRz, xRy,yRz, R, = A yRz, xRy, xRz, R, = A
r Euc

xRy, yRz, R, = A xRy, xRz, R, = A

t

1= labX: labelled sequent calculi for logics in the S5 cube
I Fapx A > A is derivable in labX

S4—— 85
TJ—TB/
D4 ----- D45~

;,-Db57
-~ DB
K4 -+--- K45 -|- KB5
;K5 C y
K = KB
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Adequacy of labX

Soundness. For all the logics in the S5 cube,
Ifrabx = X :AthenExy = x: A

Example. If the premiss of rule Ser is valid, then its conclusion is
valid in all serial frames.

xRy, R, T = A

—_— (y!
T Rr=a W

Admissibility of cut. Cut is admissible in labX:

RIT=Ax:A x AR, I["=A
RR, [, = AN

cut

Cut-free completeness. For any logic X in the S5 cube,
If kx A then Fapx = x @ A.
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Countermodels and termination




Main results, graphically
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A semantic proof of completeness

Cut-free completeness (semantically). For any logic X in the S5 cube,
If ':Xﬁ then Fapx . = x : A.
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A semantic proof of completeness

Cut-free completeness (semantically). For any logic X in the S5 cube,
If Ex A then klapx = x : A.

Proof. Suppose Habx = x : A. We shall prove that [=x A.

That is, we construct a model M* with frame conditions X and a
realisation p* such that M*, p* = = x : A.

Therefore M*,p*(x) = A and {=x A.

iz We construct a countermodel from an exhaustive search tree
for = x: A.

> Infinite search tree ~s Infinite countermodel
> Finite search tree ~» Finite countermodel
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